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The dynamics of a discrete polymer in time-dependent external potentials is studied with the master equation
approach. We consider both stochastic and deterministic switching mechanisms for the potential states and give
the essential equations for computing the stationary-state properties of molecules with internal structure in
time-dependent periodic potentials on a lattice. As an example, we consider standard and modified Rubinstein-
Duke polymers and calculate their mean drift and effective diffusion coefficient in the two-state nonsymmetric
flashing potential and symmetric traveling potential. Rich nonlinear behavior of these observables is found. By
varying the polymer length, we find current inversions caused by the rebound effect that is only present for
molecules with internal structure. These results depend strongly on the polymer type. We also notice increased
transport coherence for longer polymers.
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I. INTRODUCTION

There has been considerable progress in the research of
Brownian motors during the past decade �see, e.g., �1–3��.
Starting with the simple pointlike Brownian particles with
time-dependent driving forces, research has expanded toward
more complex objects such as interacting Brownian particles
�e.g., �4–9�� and polymers �10–12�. In this paper, we study
polymer motion with discrete lattice models, which allows us
to consider different kinds of microscopic polymer dynamics
in detail. Aside from being a purely theoretical branch of
study, analysis of simplified discrete nonequilibrium particle
models has became an important tool for studying biologi-
cally inspired Brownian motor systems �e.g., �13��.

Discrete models have been applied widely to single-
particle ratchet problems �e.g., �14–17��. We expand this pic-
ture by considering a generalized Rubinstein-Duke model
�RD model� �18,19� for polymer motion in discrete time-
dependent potentials. An interesting question is, what kind of
dynamics lies beyond simple pointlike particles and how can
one calculate its properties, such as the effective diffusion
coefficient and the drift. Although there are plenty of studies
concerning the behavior of the RD polymer in zero �or uni-
form� field �e.g., �20,21��, only recently has a ratchet mecha-
nism �tilting ratchet� been considered in this context �22�.

Especially because of the high complexity of Brownian
motors with internal structure, most studies of these systems
have applied the Monte Carlo method. However, since the
ratchet systems are quite sensitive to the values of param-
eters, and drifts generated by pure ratchet mechanism are
usually very small, Monte Carlo simulations tend to be very
time-consuming and inaccurate. In this paper, we study these
systems with the master equation approach. The results ob-
tained in this way are accurate enough to reveal the details of
the dynamics.

The purpose of this paper is to give a hands-on example
of how one applies the master equation method to systems
involving time-dependent periodic potentials and complex
molecules by using a modified RD model polymer as a pro-
totype of such molecules. We perform calculations for short
linear polymers in a nonequilibrium environment generated
by flashing and traveling ratchets. To test the significance of
the polymer type, reptating or not, we compare the motion of
the RD polymer with the dynamics of a modified version of
the RD polymer with less constrained microscopic move-
ment.

The paper is organized as follows. In Sec. II, we expand
the modified RD polymer model to periodic time-dependent
potentials and give equations for the calculation of the drift
and diffusion coefficients. In Sec. III, we present results of
the calculations for short polymers. Finally in Sec. IV, we
give our conclusions and discuss the implications to applica-
tions.

II. THE MODEL AND METHODS

The RD model was originally developed to model the
random motion of a flexible polymer in a confined medium
with static obstacles �e.g., pores in gel� that the polymer must
bypass, therefore causing the polymer reptation. By assum-
ing that the network of obstacles can be modeled �on aver-
age� by a latticelike structure, that the correlation length be-
tween the polymer segments is smaller than the distance
between the obstacles, and that only the polymer heads are
able to move into previously unoccupied cells �lattice sites�,
the problem can be discretized to a simple particle hopping
model �18�. Soon after the original model was expanded �19�
to be suitable for external potentials �e.g., static field�, pure
theoretical research of the model started to flourish such as in
Refs. �20,23�.

Technically the RD model is a spin-1 chain with special
kinds of nearest-neighbor interactions between the particles
�reptons�. By assuming that the reptons experience random*janne.kauttonen@phys.jyu.fi
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“pushes” by the environment modeled with a continuous-
time Markov process with exponentially distributed waiting
times, we can construct the stochastic generator of the sys-
tem.

In order to study the effect of the intrinsic transition rules
of the polymer in time-dependent periodic potentials on
long-time dynamics, we will compare the results of the RD
model to the results of a nonreptating polymer, which allow
the breaking of the reptation tube. In this paper, we call this
extended model the free-motion model �FM model�. In Fig. 1
there is an illustration of an example configuration of a six-
repton polymer with arrows indicating all allowed moves for
both RD and FM models �see also Ref. �24��. All repton
transitions are between nearest-neighbor lattice sites only.
Similar extensions have been studied previously in a differ-
ent context in Refs. �24–26�.

As an environment for the polymers, we assume a discrete
periodic potential V�x� such that

V�x + L� = V�x� .

To make contact with Kramers rate theory �see, e.g., �27��
and the previous work related to discrete ratchets �16�, we
define the transition rate from state i to j by

�i→j = � exp���V�i� − V�j���

and choose �=�=1 to define the time and energy scales
along with the lattice constant 1 to define the spatial length
scale. We shall next define the time-evolution operators for
the RD and FM models �readers not interested in the formal
development may skip the rest of this section�.

The mathematical model for the polymer, which contains
the RD model as a special case but also allows breaking of
the reptation tube if wanted, is constructed as follows �see,
e.g., �28��. Within the most compact, the inner coordinate
representation, every bond between reptons can be in three
states; up �state A�, down �state B�, or flat �state 0�. In Fig. 1,
reptons 1, 2, and 3 are in state 0, repton 4 in state A, and
reptons 5 and 6 in state B. An N-repton polymer has N−1
bonds. The state corresponding to polymer configuration y is
thus given by a 3N−1-dimensional state vector ��y�.

The nonzero elements of the local creation and annihila-
tion operators defining the dynamics of the bonds are

�nA�1,1 = �n0�2,2 = �nB�3,3 = 1,

�a�2,1 = �a†�1,2 = �b�2,3 = �b†�3,2 = 1.

The operators a and b produce changes in the local bond
configuration as indicated in Fig. 1. To extend the model to
include a periodic potential V, we must add an additional
state. One repton is chosen as a marker repton that keeps
track of the polymer position within the potential. The tran-
sition rates of a single repton now depend on the position of
the marker repton and all other bonds separating it from the
marker. Either of the head reptons is the most convenient
choice for the marker repton, hence we choose here the rep-
ton labeled 1 �see Fig. 1�. The dimension of the marker state
is L, so the dimension of the total system of equations be-
comes L�3N−1.

By denoting

L�i� = exp�− V�i + 1� + V�i�� ,

R�i� = exp�− V�i − 1� + V�i�� ,

indicating transitions to the left and right �corresponding
down and up in Fig. 1�, the nonzero matrix elements for the
marker state and transition operators are

�cl
−�l−1,l = 1 for l � 1, �cl

+�l+1,l = 1 for l � L ,

�c1
−�L,1 = �cL

+�1,L = �nl�l,l = 1,

where 1� l�L. The state of the polymer now has the form

�marker repton� � �polymer configuration� = ��l� � ��y� ,

where ��l� is the marker repton state vector with dimension
L. The stochastic generator of the polymer model in the
L-periodic potential thus becomes

H = 	
l=1

L 
Al + 	
y
�By,l + 	

i=1

N−2

Mi,y,l� , �1�

where the operator A applies to bond 1 and the marker rep-
ton, M applies to bulk reptons, and B applies to bond N−1.
The explicit forms of these operators are given in Appendix
A.

A. Time-dependent potentials

The time dependence of the environment can break the
detailed balance and may result in a directed drift. We as-
sume that the switching between the distinct environments is
independent of the polymer state in the potential, i.e., there is
no feedback from the polymer. The switching mechanism
between the potentials can be either stochastic or determin-
istic. The stochastic Markovian switching allows us to evalu-
ate the stationary state directly by solving an eigenvalue
problem. This is the most widely used way of studying
Brownian motors and similar systems. With deterministic
switching, we must numerically integrate to get the periodi-
cally stationary state.

Due to the time- and position-dependent transition rates,
extra care must be taken to numerically study the process

FIG. 1. �Color online� Illustration of the allowed transitions in
RD and FM models for a six-repton polymer in one of its configu-
rations. The moves described by the gray �blue� arrows are only
allowed for the FM polymers and those by the black arrows for both
polymer types. The letters a, b, and c represent the operators corre-
sponding to the moves and are defined later in the text.
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accurately. For example, one should not use the standard
discrete-time Monte Carlo simulation method that has been
widely used in various RD model studies. It does not pro-
duce correct results for our models. Instead one should
handle the master equation directly by means of numerical
integration or use the continuous-time Monte Carlo method.
In general, transport of particles in time-dependent potentials
is a hard problem to solve exactly. Even for a single particle
in a periodic potential, the general solution is not known. The
solution for stationary potentials, however, is available �pio-
neered by Derrida �29��.

First assume Markovian switching between the potentials.
We must include an additional state that keeps track of the
current potential,

�potential state� � �marker repton�

� �polymer configuration� = ��s� � ��l� � ��y� ,

where ��s� is the state vector of the potential with dimension
S, i.e., the number of different potentials. Since there is no
feedback mechanism, adding this new state is straightfor-
ward. The nonzero state and transition operator elements for
the potential state are

�ĥi�i+1,i = 1 for 1 � i � S, �ĥS�1,S = �ns�s,s = 1,

where 1�s�S. By defining the operator ĥ like this, we con-
sider only cyclic transitions between the potentials �i.e., 1
→2→¯→S→1→¯� to preserve the analogy with the de-
terministically switching potentials. The stochastic generator
becomes

H = 	
s=1

S

�H̃s + T s
−1�ns − ĥs�� ,

where H̃s’s are formed by extending all elements of the op-
erator in Eq. �1� with their corresponding potential state s
�e.g., ai,j→nsai,j� and T1 ,T2 , . . . ,TS are the mean lifetimes of
the potentials.

With deterministic switching, the stochastic generator is
given by

H�t� =�
H1, t � �0,T1�
H2, t � �T1,T1 + T2�
]

HS, t � 
	
i=1

S−1

Ti,T� , �
where Hs is the operator of the type �1� in the potential s and
T=	i=1

S Ti is the time period and H�t+T�=H�t�. In this case,
there exists a T-periodic stationary solution. Once H is given,
the time evolution of the system is governed by the master
equation dq�t� /dt=H�t�q�t�, where q�t� is the probability
vector. Since Hs’s are generally nonsymmetric, q�t� usually
has an oscillating behavior.

B. Drift and diffusion

We are interested in the drift and diffusion of the center of
mass �CM� of the polymer. The velocity and the diffusion
coefficient can be defined as

v = lim
t→�

d

dt
�xCM�t�� ,

Deff =
1

2
lim
t→�

d

dt
��xCM�t�2� − �xCM�t��2� ,

where xCM is the center of mass of the polymer. Here v and
Deff could also be defined for single reptons instead of the
center of mass and this local approach naturally leads to the
same long-time values.

From the previous equations we define the Peclet number

Pe =
�v��
Deff

,

where we choose the length scale �=1. Since our polymer is
simply composed of several neighbor-hopping random walk-
ers, we can generalize the formalism of Ref. �17� �which
generalizes the ideas of Ref. �29��. First define

qy�t� = 	
n=−�

�

pn,l,y��t� , �2�

sy�t� = 	
n=−�

�

�l + nL�pn,l,y��t� − �xCM�t��qy�t� , �3�

where pn,l,y is the probability to find the marker-repton in the
position l+nL with the polymer inner configuration y� and
the redefined state y includes both the marker-repton position
�l� and the inner configuration �y�� within the L-periodic
potential. Assume that the stochastic generator H of the total
system is defined by the rates �i,j from state i to j. It can be
shown by using the definitions above, by taking the time
derivatives and using the master equation �see, e.g., �30� for
a similar calculation�, that

v�t� = h	
y

�R̄out
y − L̄out

y �qy�t� ,

where

R̄out
y = 	

i

→

�y,i, L̄out
y = 	

i

←

�y,i

with arrows indicating the direction �right or left� of those
repton transitions that lead from the state y to states i, ne-
glecting all the rest. Since this expression is for the center of
mass, h=1 /N is chosen as the new lattice constant.

Similarly, we get

Deff�t� =
h2

2 	
y

�R̄out
y + L̄out

y �qy�t� + h	
y

�R̄out
y − L̄out

y �sy�t� .

The evolution equations for qy�t� and sy�t� can be found by
differentiating Eqs. �2� and �3� in time and using the master
equation once more. We arrive at
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dqy�t�
dt

= − �R̄out
y + L̄out

y �qy�t� + R̄in
y �q�t�� + L̄in

y �q�t�� ,

dsy�t�
dt

= − �R̄out
y + L̄out

y �sy�t� + R̄in
y �s�t�� + L̄in

y �s�t��

− h�L̄in
y �q�t�� − R̄in

y �q�t��� − v�t�qy�t� ,

where

R̄in
y �q�t�� = 	

i

→

�i,yqi�t�, R̄in
y �s�t�� = 	

i

→

�i,ysi�t� ,

L̄in
y �q�t�� = 	

i

←

�i,yqi�t�, L̄in
y �s�t�� = 	

i

←

�i,ysi�t� .

Note that all transitions are assumed to be between
nearest-neighbor lattice sites only. Otherwise transitions of a
certain length should be collected in their own sets according
to their hopping distances ��L�, which would appear as co-
efficients of additional sum terms in the equations. In the
matrix form

dq�t�
dt

= H�t�q�t� , �4�

ds�t�
dt

= H�t�s�t� − hHsign�t�q�t� − v�t�q�t� , �5�

where Hsign has the structure

�Hsign�i,j = �H�i,j for all right transitions,

�Hsign�i,j = − �H�i,j for all left transitions,

�Hsign�i,j = 0 for all other transitions i, j .

This operator is easily built while building the stochastic
generator itself. Since v�t� in Eq. �5� is governed by Eq. �4�,
these systems must be solved simultaneously. See also Refs.
�31,32�, where a similar approach has been applied to find
the drift and the effective diffusion coefficient for complex
molecules.

1. Time-independent stationary states

When H is time-independent, we can take the limit t
→� and define the steady-state parameters as

Qy = lim
t→�

qy�t�, Sy = lim
t→�

sy�t� .

By using these, we get well-defined stationary values

v = h	
y

�R̄out
y − L̄out

y �Qy ,

Deff =
h2

2 	
y

�R̄out
y + L̄out

y �Qy + h	
y

�R̄out
y − L̄out

y �Sy �6�

for the velocity and the effective diffusion coefficient. Now
Qy’s and Sy’s are found by solving the equations

HQ = 0, HS = hHsignQ + vQ . �7�

So far equations like these have been solved exactly only for
a single particle on a periodic lattice. The first solution was
given in Ref. �29� for the nearest-neighbor hopping particle
with arbitrary transition rates. This was later extended, e.g.,
for parallel one-dimensional lattices in Ref. �30�. However,
for more complex systems �like RD polymers�, solutions
cannot be found by exact methods and numerics must be
applied. The structure of H also raises some issues. Since the
determinant of H is always zero, mathematically there is no
unique solution for the nonhomogeneous linear set of equa-
tions in Eqs. �7�. This can be easily seen by using the fact
that an ergodic stochastic system always has a nontrivial sta-
tionary state, therefore by the rank-nullity theorem we have
Rank�H�=Dim�H�−1, meaning that we have one free pa-
rameter and all solutions are separated by a constant �i.e., Sy
is a solution⇔ �Sy +const� is a solution�. However, since we
also have conditions

	
y

Qy = 1, 	
y

Sy = 0,

which can be derived from the definitions of sy�t� and qy�t�,
there indeed exist unique solutions for S and Q �which is of
course also required on physical grounds�.

Equation �6� is a generalization of the result derived in
Ref. �20�. This can be seen by considering the case L=1
without external potentials �i.e., y’s are simply inner configu-
rations, v=0 and QªQy =3−N+1�, so that with
ayª−2Sy /hQ we have �for lattice constant 1�

Deff =
h2

2
Q	

y

�R̄out

y + L̄out
y � +

2

hQ
�R̄out

y − L̄out
y �Sy

=
1

2N2

1

3N−1	
y

��ry + ly� − �ry − ly�ay� .

Here we used the fact that, in this case, every state y has a
weight 1 /3N−1 and ry / ly’s can be interpreted as the “number
of arrows” for right-left transitions out from the state y. In
Ref. �20�, symmetry properties �reflections� of polymer con-
figurations were used to find a unique solution for ay’s, but
this is not possible when external potentials are present and
the problem is nonsymmetric. However, numerical linear al-
gebra tools can be used to find the solution.

2. Time-dependent stationary states

When H is time-dependent, we must integrate Eqs. �4�
and �5� in time until the system arrives at the periodically
stationary state �with period T�. The mean velocity and the
diffusion coefficient are determined by

v = lim
t→�

1

T
�

t−T

t

v�s�ds ,

Deff = lim
t→�

1

T
�

t−T

t

Deff�s�ds .

In practice, these are calculated by integrating in time long
enough so that results have converged.

KAUTTONEN, MERIKOSKI, AND PULKKINEN PHYSICAL REVIEW E 77, 061131 �2008�

061131-4



C. Fast and slow switching regimes

When the switching times of the potential are close to the
characteristic time scales of the system �i.e., relaxation
times�, the behavior depends heavily on the switching type
and lifetimes of the states. However, when the potential
changes very rarely or extremely fast, the system becomes
independent of the switching type and even of the relative
lifetimes of the states.

First assume that the total mean switching period T→0
such that Ti	0 for all mean lifetimes of the potentials �1
� i�S�. In this case, particles experience an effective aver-
age potential �“mean-field” �36�� and the transition rates be-
come

�i,j
MF = 	

k

xk�i,j
k , �8�

where �i,j
k are the transition rates of the stochastic generator

of type �1� in the potential k and xk=Tk /T’s are weight fac-
tors determined by the mean lifetimes of the potentials. This
leads to a mean-field stochastic generator with dimension L
�3N−1. This approach was used in Ref. �33� to solve exactly
the single-particle dynamics in two arbitrary alternating pe-
riodic potentials. Although this mean-field limit is math-
ematically well defined, from the physical point of view it is
artificial since real-world systems have inertia, and changing
the potential state takes some finite time �e.g., charge redis-
tribution to build up an electric field�. So the velocity always
goes to zero in the fast switching limit.

Now assume that Ti
�i for all 1� i�S, where �i is the
longest relaxation time of the system in the potential i. This
means that the system always converges close to the station-
ary state in the current potential before the potential is
switched to the next one. By the model assumptions, drift is
always zero at the stationary state in all potentials. Let dj�i
denote the mean travel distance of the molecule center of
mass within the potential j using the stationary state of the
potential i as an initial state and then letting the system fully
relax �37�. Summing over all dj�i’s gives the total expected
distance within one time period T, and by assuming cyclic
switching of the states, we define

d = 	
i=1

S

di�i+1. �9�

The sign of d determines the drift direction in the large T
limit and the asymptotic drift thus becomes v=d /T.

That internal molecular states may have a strong influence
on the dynamics can be already seen in the slow switching
regime. Letting the molecule first find its equilibrium in
some nonflat potential and then turning the potential off may
indeed result in directed motion of the molecule after the
switching, due to internal relaxation, whereas a single par-
ticle would be immobile in the mean. These rebounds might
be dominating and define the sign of d.

III. RESULTS

A. Choice of the potentials

We have numerically analyzed RD and FM models with
the polymer length of N=1, . . . ,11 reptons and with two po-
tentials �S=2� and stochastic switching. All calculations
were done with MATLAB. We used the standard Runge-Kutta
4 method to integrate Eq. �4� in time and a trapezoid method
to calculate the resulting integral in Eq. �9�. The Arnoldi and
BiConjugate gradient stabilized methods were used to solve
homogeneous and nonhomogeneous systems in Eqs. �7�.

We consider two basic potential types: flashing and trav-
eling ratchets. The first type is the most general nonsymmet-
ric potential that has been extensively used in studies of
Brownian motors and the latter one is a generic example of
asymmetrically placed symmetric potentials and has been re-
cently used with single-particle models �17,34�. We consider
the simplest case L=3, which is the smallest possible length
that can form both of these potentials with the ratchet effect.
See Fig. 2 for sketches of these potentials. A positive drift
sign indicates motion in the increasing lattice-site index di-
rection. Because of symmetries, the next choice would be
L=5, but this choice would also need longer polymer lengths
�N
11� than we can efficiently handle. We require that the
polymer must be able to cover several potential periods when
fully extended. We also set Vmax= 1

2 , which we found to give
interesting results while also being computationally feasible
�38�. The results concerning the general behavior and drift
inversion do not significantly depend on the choice of Vmax.
With these parameter choices, the relaxation times � for N
=3, . . . ,11 fall between ln���=0.8, . . . ,4.8 for RD polymers
and ln���=0.3, . . . ,3.4 for FM polymers in all potentials
studied here. Below we let N and T vary. By the limit T
→0, we mean going to the mean-field stochastic generator
with the rates given by Eq. �8�. Overviews of the dynamics
of polymers of lengths N=1,3 ,5 ,7 ,9 are given in Figs. 3
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�two period lengths shown�.
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and 5, while Figs. 4 and 6 provide more detail for N
=1, . . . ,11. We are especially interested in the current inver-
sions and the general effects of the polymer size.

B. Flashing ratchet potential

Let us first define the time period T=Ton+Toff and the
symmetry parameter x=Toff /T, where Ton/off are the corre-

sponding mean lifetimes of the potentials �see Fig. 2�. In
previous studies �e.g., �15,16��, only symmetric flashing x
= 1

2 was considered. This results in zero drift for T→0, which
also happens in all real systems �for all x�. However, with
x� 1

2 , this does not happen for the models considered here.
The drift changes its sign as a function of x and the point of
this sign change in x depends on T. This is shown in Fig. 3,
where we have plotted v as a function of x with three differ-
ent T’s �Figs. 3�a�–3�c�� that represent the general behavior
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�solid�, T=exp�3� �dash�, and T=exp�5� �dot�.
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FIG. 4. �Color online� Drift and Peclet numbers of the RD poly-
mers �left column� and FM polymers �right column� in the flashing
ratchet �L=3, Vmax= 1

2 � with N=1 �solid black�, N=3 �dash�, N=5
�dot�, N=7 �dash-dot�, and N=9 �solid gray �blue��. Symmetry pa-
rameters x=Toff /T are x= 1

4 �a�, x= 1
2 �b�, and x= 3

4 �c�.
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FIG. 6. �Color online� Drift and diffusion of the RD and FM
polymers in the traveling potentials �L=3, Vmax= 1

2 �. �a�–�c� Drift as
a function of the symmetry parameter x=T1 /T with T→0 �a�, T
=exp�3� �b�, and T=exp�7� �c� with N=1 �solid black�, N=3 �dash�,
N=5 �dot�, N=7 �dash-dot�, N=9 �solid gray �blue��. �d� The effec-
tive diffusion coefficient for N=9 with T→0 �solid�, T=exp�3�
�dash�, and T=exp�7� �dot�.
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in different scales of T. The drift in the positive direction
�generated by the short slope� arises when the ratchet is
switched on for such a short time that the larger rate of the
short slope wins the smaller rate of the longer slope �see Fig.
2�. Therefore, for increasing T, the ratio x must get smaller to
retain the dominance of the shorter potential slope, and fi-
nally x goes to zero at T→�.

When we add more reptons, the overall shape of the v
curves remains very similar with small T’s. However, a clear
effect of the polymer length and internal mechanisms can be
seen with the long-time period T=exp�5�, where the drift
curve of the N=9 RD polymer turns positive for x� 1

2 . The
velocities of the FM polymers remain on the negative side
and no change in their general drift behavior can be seen as
the parameters N and T are varied. In Fig. 3�d�, we have
plotted an example of Deff behavior of the N=9 polymers
with corresponding T’s of Figs. 3�a�–3�c�. Here x=1 simply
gives the diffusion coefficient of the free polymers, and the
diffusion constant in the static potential �at x=0� is always
smaller. As can be seen, the effect of T and x on the diffusion
is quite small in general.

Next we fix values x= 1
4 , 1

2 , 3
4 and examine the T depen-

dence of the drift and the Peclet number in detail. The results
in Fig. 4 reveal a complex behavior of the drift. The overall
form of the curves is as expected: the drift and the Peclet
number have some �local� maxima around ln�T��0. For
small T, the single particle remains the fastest in all cases
excluding x= 1

2 for FM polymers, where it is the slowest one.
However, as T gets larger, longer polymers eventually be-
come faster, which is caused by their longer relaxation time
�short polymers have already reached their stationary state�.
This can be clearly seen from Figs. 4�b� and 4�c�, but it also
takes place in Fig. 4�a� to some extent. Similar behavior of
coupled particles being faster than single ones and also hav-
ing drift inversions were also reported in Ref. �5�. Although
the relaxation times are quite different �see Sec. III A�, the
maxima of the drift fall close to ln�T��1 for all polymer
lengths and the position of the maximum Peclet number is
almost constant. The drift sign change, already seen in Fig. 3,
is present in Fig. 4�c�.

The behavior of the Peclet number is very clear and simi-
lar in every case in Fig. 4: the larger the polymer, the larger
the Peclet number. Thus the transport of longer polymers is
more coherent than of shorter ones. Similar behavior was
found in a continuum model consisting of elastically coupled
Brownian particles �4�. By comparing the values of the Pe-
clet number between polymer types, we see no significant
differences between the curves. There is a slight difference
for large values of T, where the Peclet number remains larger
for FM polymers. This holds with every choice of param-
eters, excluding the possible current inversion points �e.g.,
the interval ln�T�=−1, . . . ,0 in Fig. 4�c��.

Next we take a closer look at the asymptotic behavior at
T→�. In Fig. 5, we have plotted the mean travel distance d
defined in Eq. �9�. For N=1,2 there are no bulk reptons so
the mean travel distances of RD and FM polymers may differ
for N�3 only. The calculation reveals that for long RD poly-
mers �N	5, a “critical length”� the rebound effect wins �i.e.,

d	0� and the polymer starts traveling backwards while the
single particle and FM polymers are traveling to the expected
negative direction. The rebound effect is also present in FM
polymers, but it is not strong enough to reverse the drift
direction. For RD polymers with L	3 with feasible polymer
lengths, our Monte Carlo test simulations do not display this
kind of an anomalous current inversion, suggesting that it
may be related to spatial discretization and that longer-range
interactions �e.g., stiffness� between reptons need to be intro-
duced to see such inversions for L	3.

We also note that a similar effect of multiple current in-
versions with tightly connected Brownian particles �rods�
was reported in Ref. �12�. In that work, however, current
inversions were not found for objects able to vary their
length �rotating rods� in the ratchet direction, whereas the
polymers in our work are able to vary their length between 1
and N and still have drift inversion.

The reason for the stronger rebound effect of the RD
polymer is caused by the strong tendency to enter �possibly
deformed� U-shaped configurations because of the strict rep-
tation rule. After the potential is turned off, this shape un-
winds and causes the drift. This also happens with time-
dependent fields �22�. Since FM polymers lack the reptation
rule, there is not as much variation in their shape as RD
polymers have, thus resulting in a weaker rebound effect.

C. Traveling ratchet potential

Let now T=T1+T2 for the mean lifetimes T1 and T2 of the
potentials depicted in the right column of Fig. 2 and define
the symmetry parameter x=T1 /T. A Similar drift and diffu-
sion behavior as previously reported in Refs. �17,34� for a
single particle is expected. In Fig. 6, we show v as a function
of x with three different T’s �Figs. 6�a�–6�c��: T→0, ln�T�
=3, and ln�T�=7. The behavior for the single particle is as
expected; the drift is antisymmetric with respect to x= 1

2 and
goes to zero at x=0, 1

2 ,1. With longer polymers, the drift
changes sign nontrivially for large T’s �Fig. 6�c�� for both
polymer types. This result is unexpected. An example of the
behavior of the diffusion coefficient is shown in Fig. 6�d� for
N=9 and different T’s. Deff always reaches its maximum at
x= 1

2 and decreases as the system goes to a static potential
state at x=0 and 1. The similarity of Figs. 3�a� and 6�a� is
caused by the fact that, as can be easily seen from Eq. �8� for
T→0, the traveling potential creates an effective rate struc-
ture similar to the nonsymmetric flashing ratchet.

Next we fix x= 1
4 and examine the T dependence in detail.

In Fig. 7, we have plotted v and the Peclet number for
ln�T�=−4, . . . ,7.5. As N	2, drift inversions can be seen
around ln�T��2 for both polymer types. As before, the
single particle remains the fastest for small T, but eventually
the drift curves begin to intersect as T gets larger and the
single particle is not always the fastest �see, e.g., the N=3
FM polymer in Fig. 7�a�, right column�. The behavior of the
Peclet number is as before: Longer polymers have more co-
herent transport, excluding the possible drift inversion points
and their neighborhood. With small values of T, the Peclet
number is also the same for both polymer types, but because
of unequal drifts for moderate and large values of T �ln�T�
�0�, also differences exist.
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The insets of Fig. 7 show the drift as a function of N
=1, . . . ,11 in detail. We have chosen ln�T�=2.85 for RD
polymers and ln�T�=2.05 for FM polymers. With these
choices, the drift inversion occurs between N=6 and 7 for
both models. In the insets of Fig. 7�b� we have plotted the
overall drift minimal values in the interval ln�T�=
−4, . . . ,7.5 as a function of N. The distinction between the
polymer types is very clear. FM polymers drift increasingly
fast backwards whereas RD polymers eventually stop mov-
ing as N gets larger. The drift inversion of the RD polymers
N�10 would require a smaller fixed x.

The magnitude of the drift, typically between 10−5 and
10−3, is comparable with the drift caused by a flashing
ratchet. The Peclet number values of the polymer motion
remain small �0.1� for both potential types, indicating very
low coherence of transport.

IV. CONCLUSIONS

We studied the ratchet effect with discrete polymer mod-
els in time-dependent potentials using the master equation
approach. We gave general equations for calculating the ef-
fective diffusion coefficient and drift in time-dependent pe-
riodic systems. Using these equations, we performed calcu-
lations in the flashing and traveling ratchet potentials for
short discrete polymers with the Rubinstein-Duke model and
a relaxed version of this model allowing tube breaking. We
found complex dynamics that results from the non-point-like
structure of the polymers by the coupling between the poten-
tial and polymer internal states. By varying the potential

switching rates, we found nontrivial inversions of the poly-
mer drift direction, which cannot occur with simple pointlike
noninteracting particles. We also found that the Peclet num-
ber grows as the polymer gets longer and is largely indepen-
dent of the polymer type, thus allowing more coherent trans-
port for longer polymers. The overall polymer dynamics in
ratchet potentials was found to be very model-specific. The
discretization of the problem in this work may be far from
many real-world applications but, nevertheless, since our
model catches the essential characteristics of the Brownian
motor system, we expect that similar properties could be
found in the nanoscale objects that can be described with
discrete states instead, such as molecular motors with inter-
nal structure. Drift inversions are especially interesting since
they facilitate more efficient separation methods of mol-
ecules. The next step would be to consider larger L and N
and the differences between deterministic and stochastic
switching �35�.

APPENDIX A: OPERATORS IN H

The explicit definitions of the operators in Eq. �1� are

Al�d� = �R�l� + L�l��ñ0,1,l − R�l�ã1,l
† − L�l�b̃1,l

† + L�l�ñA,1,l

− L�l�ã1,l + R�l�ñB,1,l − R�l�b̃1,l,

By,l = �R�l + f�N − 1,y�� + L�l + f�N − 1,y���n0,N−1,y,l

− R�l + f�N − 1,y��aN−1,y,l
† − L�l + f�N − 1,y��bN−1,y,l

†

+ L�l + f�N − 1,y��nA,N−1,y,l − L�l + f�N − 1,y��aN−1,y,l

+ R�l + f�N − 1,y��nB,N−1,y,l − R�l + f�N − 1,y��bN−1,y,l,

Mi,y,l = R�l + f�i,y���nA,i,y,ln0,i+1,y,l + n0,i,y,lnB,i+1,y,l

− ai,y,lai+1,y,l
† − bi,y,l

† bi+1,y,l� + L�l + f�i,y��

��n0,i,y,lnA,i+1,y,l + nB,i,y,ln0,i+1,y,l − ai,y,l
† ai+1,y,l

− bi,y,lbi+1,y,l
† � + �R�l + f�i,y���nA,i,y,lnB,i+1,y,l

+ n0,i,y,ln0,i+1,y,l − ai,y,lbi+1,y,l − bi,y,l
† ai+1,y,l

† �

+ �L�l + f�i,y���nB,i,y,lnA,i+1,y,l + n0,i,y,ln0,i+1,y,l

− bi,y,lai+1,y,l − ai,y,l
† bi+1,y,l

† � ,

where �=0 for RD polymers and 1 for FM polymers, and

ã1,l = cl
+a1, ã1,l

† = cl
−a1

†,

b̃1,l = cl
−b1, b̃1,l

† = cl
+b1

†,

ñz,1,l = nlnz,1,

xi,y,l = nl��
j=1

i−1

ng�y,j�,j�xi,
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FIG. 7. �Color online� Drift and Peclet numbers of the RD poly-
mers �left column� and FM polymers �right column� in the traveling
ratchets �L=3, Vmax= 1

2 � as a function of the mean time period T
with the symmetry parameter x=T1 /T and N=1 �solid black�, N
=3 �dash�, N=5 �dot�, N=7 �dash-dot�, and N=9 �solid gray
�blue��. For the left inset of �a� ln�T�=2.85 and ln�T�=2.05 for the
right inset.
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nz,i,y,l = nl��
j=1

i−1

ng�y,j�,j�nz,i,

with x� �a ,b ,a† ,b†�, z� �A ,0 ,B�. The function g�y , i�
� �A ,0 ,B� gives the state of the ith bond in the configuration
y, and the function f ,

f�i,y� = 	
j=1

i

��y�nA,i − nB,i��y�, 1 � i � N − 1,

gives the position of the repton i+1 in marker-centered co-
ordinates. The detailed forms of the functions g and f depend
on the selection of the state basis.
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